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Abstract. The coupling of spin waves for a Heisenberg system with a finite size is studied. 
It is found,that the final results are boundary condition dependent. For a periodic system, the 
finite-size effect weakens the coupling of spin waves and an additional tern proportional to 
-T71’/N appears with N ,  the system’s size, in the expression for the number density of spin 
waves at temperature T .  The free boundary greatly complicates the coupling of spin waves. 
There are ihrre new kinds of scattering process: bemeen spin waves parallel to the free surfaces 
of the system, between spin waves parallel to the s h e  and other waves, and between spin 
waves with the same components in the direction perpendicular to the free surface of the system, 
Unlike the others, the last effective interaction tends to depress the excitation of spin waves at 
low temperahlres. 

1. Introduction 

Clusters made up of several hundred or thousand atoms show a different behaviour from 
that of an infinite system. The study of such clusters may give us an insight into how the 
properties of the system evolve from cluster to bulk on increasing the number of atoms 
in clusters, and the roles the finite size and surface play in the physical processes. Much 
effort, both theoretical [I-71 and experimental [8-13], has been devoted to the study of 
magnetic clusters. These studies have shown that the magnetization in a finite system 
is inhomogeneous. The magnetization of the surface layer of the cluster decreases more 
rapidly with increasing temperature T than does that of the inner layers [l-3, 7, 9, 10, 131. 
An obvious deviation in the mean magnetization from the Bloch T3/* law was also found 
17, 141. 

In this paper, based upon the spin-wave theory, we shall study the influence of the size 
and surface of the system on the coupling of spin waves for two kinds of boundary condition: 
a periodic boundary condition and a free boundary condition. The coupling of spin waves 
has been a constant topic of research [15-18]. Dyson [I51 proved that the coupling of spin 
waves promotes the excitation of spin waves and results in a term proportional to T4 in 
the expression for the spontaneous magnetization. Wortis [I71 discussed the possibility of 
the existence of bound states of two spin waves due to their coupling. In a finite system, 
the distribution of the spin deviation corresponding to a spin wave will be greatly different 
from that of an infinite system owing to the finite size and free surface. In this case, what 
will result from the coupling of spin waves is a question that needs be answering. 

In this article, we report a numerical calculation which was performed for small clusters 
(composed of several hundred or fewer spins). For large but finite clusters, the asymptotic 
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expression for the number density of spin waves was obtained. Combining both results, we 
try to give an idea about how the properties evolve from duster to bulk. 

The contenb of this paper are arranged as following: in the next section, a general 
theory of the interaction of spin waves is presented on the basis of the perturbation theory. 
In section 3 and 4, the number densities of spin waves in clusters under the periodic 
boundary condition and the free boundary condition, respectively, are studied. In section 5, 
some conclusions are given. 

J R Sun et a1 

2. The coupling of spin waves 

The Hamiltonian of a Heisenberg system composed of N x N x N spins is 

where S: (Sty) is the spin-raising (spin-lowering) operator, J is the ferromagnetic coupling 
parameter between spins, y = gk (with g the Land6 g-factor, and p the Bohr magneton) 
and h is the applied field. The sum extends over all neighbouring pairs of spins. 
After the transformations 

SF = 42s - a+a,ai 

S; =a+,/= -a+.; 

Sf = S -ai ai + 

and 

a, = x . c i q b i  
4 

equation (1) develops into the form 

The first term corresponds to the free spin waves with 

E4 = E ~  + y h  

and 

f (1234)  J ( C ; ~ ~ C ; ~ ~ C ; ~ , C ~ ~ .  + C ; ~ , C ; ~ C ~ ~ , C ~ ~ ,  - ~ C ; ~ , C ~ ~ , C ; ~ C ~ , , ~ ) .  (3) 
qr924144 

Here, ciq is given by the secular equations 

for i = 1, 2, . . . , N with li) = 10, 0, . . . , n, = 1.. . . , 0). 
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According to perturbation theory, the grand partition function of the system can be 
written as 

drexp(s&)$ exp(-s&) 

dr exp(s&)& exp(-s&) dtexp(r&)& exp(-t&) - . . . 
where p = l / k ~ T  ( k ~  is the Boltzmann's constant and T the temperature). Further 
calculation gives the free energy of the system: 

where F(q,  q') = f ( q ,  q', q', q ) + f ( q ,  q', q, 6). Following the familiar thermodynamic 
relation, the number density of spin waves is, 

Only a two-spin-wave process is explicitly considered in (6). A multiple-spin-wave 
process is relatively unimportant at low temperatures. 

3. Clusters under the periodic boundary condition 

Let us consider a system composed of N x N x N spins that form a simple-cubic lattice. 
Under the periodic boundary condition, cj, = N-3/2exp(-iq.j) where j denotes the 
coordinates of spin Sj and q the reciprocal vector. Substituting this expression for cj, in 
(S), one obtains 

e x p W )  (4:q': + 4:q': + 4:q'i) 
0) 

1 

Where p = 2 S f / k ~ T .  
The first sum in equation (7) corresponds to a free spin wave. If we denote this as 

n t ( N ,  j), for large N a direct calculation gives (see appendix B for details) 
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The second sum in equation (7) represents the effect of the coupling of spin waves. A 
simple calculation shows that the change in the number density of spin waves due to the 
coupling is 

J R Sun et a1 

B J  ( d q ?  + &q‘: + q:q’:) 
n c ( N , j )  = - 

N6 q#o.n“fo [exp(Bq2) - ‘I2 [exp(Pq’z) - I] 

0.0567 3C(i) <($) 
= -  + 

~ x ~ / ~ N S ~ ~ / ~  512n3Sb4 ’ 

where (8) has been used. At a quick glance, one can see that the T4 term is the same 
as obtained by Dyson except for a factor 0.3/S, a result of the omission of non-diagonal 
scattering [15, 161. Equation (9b) indicates that the finite size of the system results in a 
negative term proportional to T” and inversely proportional to N, the system’s size. 

Finally, for large N ,  one has 

When N is small, no simple expression can be obtained. The interaction of spin waves 
in that case was studied numerically by directly calculating n ( N ,  j) from equation (6). 
Figure 1 gives the variation in n , ( N . B )  with N for different temperatures (S = 1). Data 
corresponding to large N are obtained from (9b). Two conclusions can be drawn from 
figure 1 .  Firstly the finite size weakens the effect of the coupling of spin waves. This is 
a result of the cut-off of the low lying energy modes of spin waves due to the finite size. 
Calculation also shows that the coupling effect is severely dependent on the system’s size 
when N is small. It is expected that a finite-size effect is evident when N3 is not more 
than several hundred. From (9a) we know that the coupling effect is proportional to the 
temperature gradient of ndN, 8). If we denote the energy gap between the ground state and 
the first excited state as A E ,  which has the form A E  = 4JS11 - cos(Zrr/N)], it is shown 
in figure 1 that A E  drops rapidly with increasing N in the range z3 < N 3  < IO3. The 
decrease in A E  makes it easy to excite a spin wave and then to increase the temperahre 
gradient of q ( N ,  j). This explains the rapid change in the coupling effect for small N. 
Secondly n,(N,  B) > 0, irrespective of the value of N ,  which means that the interaction 
between spin waves remains attractive if the periodic boundary condition is applied. 

4. C l ~ ~ t e r ~  under the free boundary condition 

Under the periodic boundary condition, the system is confined in a finite volume without 
a surface. Such a system is meaningful for theoretical study. However, for an isolated 
cluster, the free boundary condition is more natural. For simplicity, we shall consider first 
the case when the free boundary condition is imposed along only one direction (e.g., the 
(1.0.0) direction) of a cubic Heisenberg system. It can be proved that in this case cj, given 
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F i w  1. Contributions of the coupling of spin 
waves lo its number density as functions of the 
system's size. The numbers in lhe figure ae the 
sizes ofthe corresponding clusters. Accordingly, 
the change in AE is also given. 

0 1 2 3 4 5  

LogP" 

by equation (4) takes the form, [I91 

wherem = ( m ~ , m z , m d ,  mi = 1. 2, ..., N, k =0,1, ..., N - 1 .  i = 1,2,3, and 
9 = (qi, 4% 43) = R(II/NI, Uz/Nz, 2/3/N3). Spin waves in this case can also be identified 
by the reciprocal vector q in form. 

From equation (3), one can directly write 



4244 J R Sun et a1 

When N >> I ,  after tedious cdculations one obtains (with formulae presented in appendix 
A) 

where 

The free boundaries complicate the coupling of spin waves greatly. Besides the effective 
interaction discussed by Dyson I151 and Oguchi, 1161 there are three scattering processes: 
between spin waves whose wavevectors parallel to the free surfaces of the system (we call 
them two dimensional spin waves), described by terms associated with the symbol 6ql,-q; 
in (12); between waves parallel to the surfaces and other waves, corresponding to terms 
associated with the symbols 6,,,0 and Jq;,0; between waves with the same components in the 
direction perpendicular to the free surface of the system, represented by terms associated 
with the symbol 6,,,9;. 

The last effective interaction mentioned above gives a negative contribution to the 
number density of spin waves (the first term in (14)). which dominates the behaviour of 
the coupling at low temperatures and represents a repulsive interaction between special spin 
waves. This is different from either an infinite system or a finite system under the periodic 
boundary condition. Along the (l,O,O) direction, a spin wave exists in the form of a standing 
wave. Spins with different positions in the (1,O.O) direction find themselves special local 
environments, which influence the coupling of spin waves. A simple estimate shows that 
the total energy when two spin waves with wavevector q = (41. 0, 0) are excited will be 

J 
N 3  

E = zE9, + - (1 - CoSql) 2 ?.E,, 

This means that two such spin waves tend to repel each other. 
The second term in (14) comes from the coupling of two dimensional spin waves. It 

decreases rapidly with increasing N. The third term is the result of enhancement of the 
number density of spin waves due to the free boundm'es (see equation (13)). Part of term 
1/87/2 comes from the coupling of two-dimensional and three-dimensional spin waves and 
part from the scattering corresponding to (qzq': + qfq';)/2 of (12)  between spin waves 
with the same (1,0,0) component. Corrections to the coupling effect mainly come fiom the 
first and second terms, especially the former. For small N ,  n, ( N ,  8) < 0 may appear. 
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Combining (13) and (14). one has 

0.0398111 [ B  (x/N)']  0.1663 -- 
Ng N b  

n(N,B)  % - 

When the free boundary condition is applied in three mutual orthogonal directions of the 
system, the calculation of F(q, q') is direct but complex and provides no more information. 
We do not consider this case here. 

Numerical calculations for clusters of N x N x N with N = 4, 5 ,  6 . 7 ,  8 were also 
carried out by directly diagonalizing equation (4). In our calculation, two cases with the free 
boundary condition along three muNd orthogonal directions (l,O,O), (0,1,0) and (0,0,1) 
and with the free boundary condition along (1,0,0) and the periodic boundary condition 
along (0,l.O) and (O,O, 1) (we shall call them the first kind of boundary condition and 
second kind of boundary condition, respectively) were considered. Typical results for the 
former are shown in figure 2. As a comparison, two curves corresponding to N + 03 

(solid curve) and N3 = 216 (broken curve) with the second kind of boundary condition 
are also presented. As expected, the negative effect of the coupling is greatly enhanced for 
small N, which causes an obvious mcdification to the number density of spin waves (figure 
3) and cannot be neglected in a accurate analysis. It is shown by figure 3 that the ratio 
In,(N, B)/nt(N,  B)! at = 2 is 2.1% for a cluster with N 3  = 216, while for an infinite 
system it is about 0.1%. Calculation also shows that n,(N, 8) < 0 even for the second kind 
of boundary condition, although In,(N, $)I is much smaller than that for the first kind of 
boundary condition. Combining the numerical results and equation (14), we can investigate 
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Figure 3. The number dewily of spin waves as a 
function of tempemhlre for a cluster with size N' = 
216. 

the change in n,(N,  j) against N (figure 4). Initially n,(N, j) decreases smoothly with 
increasing N and has a minimum at N = 5-6 (temperature dependent). Subsequently an 
increase in N leads to a rapid increase in n , ( N , B )  up to N rz 30 . At this point, the 
behaviour of the c1uster.i.s very near to that of an infinite system. Different from the case of 
the periodic boundary condition, the most obvious linite-size effect for the coupling of spin 
waves takes place when N takes certain values. As mentioned above, there is a repulsive 
interaction between certain spin waves, which negatively contributes to n F ( N ,  j). At the 
same time, the free boundary condition makes it easy to excite a spin waves (compare curves 
2 and 3 in figure 3), which in turn enhances the positive contribution @om the coupling of 
spin waves. The negative and positive contributions relate to the system's size differently. 
This may be the reason for the emergence of the minimum in figure 4 when N is varied. 

5. Conclusions 

(1) For a system under the periodic boundary condition, the coupling of spin waves 
contributes a term proportional to -T7I2/N to its number density when N is large. The 
coupling effect of spin waves is obviously weakened only in a system whose size N' is not 
more than a few hundred. No new scattering processes are introduced in this case. 

(2) For a system with free boundaries, because of the reflection of the boundary, spin 
deviations exist in the form of a standing wave in the direction perpendicular to the surface 
and are position dependent This introduces new scattering mechanisms into the interaction 
of spin waves. There are four kinds of scattering process between spin waves in a small 
Heisenberg system. The first is the conventional scattering discussed by Dyson [15]; it 
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gives a conhibution to the number density of spin waves which is proportional to Ta. The 
second is the scattering between the spin waves whose wavevectors are parallel to the free 
surface of the system. The third is the scattering between the spin waves parallel to the 
surface and others. The last is the scattering between spin waves whose wavevectors have 
the same component in the direction perpendicular to the free surface of the system. 

( 3 )  Different from the other cases, some spin waves with the same components in 
directions perpendicular to the free surfaces of the system show a tendency to repel each 
other. As a result, the contributions from the coupling of spin waves to its number density 
is negative at low temperatures. 
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Appendix h 

In the following, we give the calculation of a sum with the form 

Doubling the size of the system, one has 

a l ' l (2N)  can be alternatively expressed as 

Zl' H l  Hk +- 2N N 2N 
_ = _  

where k = 0,l. Expanding f (n l ' l (2N) )  at n l / N  gives rise to 

where f ("')(x)  represents the mth derivative of f ( x )  with respect to x .  From equations 
( A l H A 3 )  one obtains 

G ( N , a )  - G ( 2 N . a )  

The first term of equation (A4) gives a correction proportional to 1 /N,  others correspond 
to higher order corrections. Substituting the first sum by an integral, one has 
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or 

G ( N ,  a) - G(w,  a) 

1 

J R Sun et ai 

= [ G ( N , a )  - G ( ~ N , L Y ) ~ + [ G ( ~ N , ~ ) - G ( ~ ~ N , L Y ) ] + . .  

(A5) - - - [f(Olk) - f(O)] - 2N 
where 

(W,ff) = - juri f ( x ) d x .  
za 0 

Similarly, the sum for multiple variables can be obtained. Firstly, 

G ( N 1 , N z 1 N 3 , a )  

1 
N: ' Ni ' N: 

(A . V)f (ax)  d x  + 0 (1 - ') (A6) 
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Appendix B 

It is easy to see that 

+... =-E 1 - 1 

N3 nZo exp(gq2) - 1 

where 
As, = -4JS ((4: + 4: + &/4! - (qf + 426 + &/6! + . . .) . 

In the following, we give the details of the calculation of the first term of (Bl). Let 

dq) 
-i J 112 + 8 q 2 / 3 !  + . . . 
8x3 1 + $q'/2 + j'q4/3! + . . . 

The term in the first pair of parenthesis is numerically calculated. According to equation 
(A8). contribution from the second pair of parenthesis is of the order of l/NZ. Other terms 
in (Bl )  can be calculated directly f?om (A8). 
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